
Mr. Path("Your task is to build a Line Following Robot.”)

Code

Code Expalnation
import time
from adafruit_crickit import crickit
ss = crickit.seesaw

• time → for adding small delays.

• crickit → controls motors and sensors on the Adafruit Crickit board.

• ss is a shortcut for crickit.seesaw, which helps read/write sensor pins.

print("Line Follower with DC Motors using pin_mode + digital_read!")

• Displays a message when the program starts.

ss.pin_mode(crickit.SIGNAL1, ss.INPUT_PULLUP)

ss.pin_mode(crickit.SIGNAL8, ss.INPUT_PULLUP)

• SIGNAL1 = Left IR sensor

• SIGNAL8 = Right IR sensor

• INPUT_PULLUP means the input pin is held “HIGH” by default, so when the sensor
detects a line, it goes “LOW.”

left_motor = crickit.dc_motor_1

right_motor = crickit.dc_motor_2

• Assigns the motors to the Crickit motor ports.

def stop():

left_motor.throttle = 0

right_motor.throttle = 0

def forward(speed=0.3):

left_motor.throttle = speed

right_motor.throttle = speed

def turn_left(speed=0.3):

left_motor.throttle = 0

right_motor.throttle =

speed def turn_right(speed=0.3):

left_motor.throttle = speed

right_motor.throttle = 0

• These control how the robot moves:

while True:

right_sensor = ss.digital_read(crickit.SIGNAL8)

left_sensor = ss.digital_read(crickit.SIGNAL1)

• Runs continuously — reads sensor data and controls motors.

• Reads the left and right sensors (True or False).

if not left_sensor and not right_sensor:

 state = "forward"

elif left_sensor and not right_sensor:

 state = "turn_right"

elif not left_sensor and right_sensor:

 state = "turn_left"

else:

 state = "stop"

Interprets sensor data:

• Both detect black (False) → Go straight.

• Left white, right black → Turn right.

• Right white, left black → Turn left.

• Both white → Stop (off the line).

if state != last_state:

This avoids repeating the same motor commands unnecessarily — improves
smoothness.

if not left_sensor and not right_sensor:

 forward(0.3)

elif left_sensor and not right_sensor:

 turn_right(0.3)

elif not left_sensor and right_sensor:

 turn_left(0.3)

else:

 stop()

last_state = state

time.sleep(0.01)

• Saves the last movement state.

• Adds a short delay (10 ms) to prevent rapid switching.

