Mr. Path('' Your task is to build a Line Following Robot.”)

Code

time
adafruit_cri

cric

print("Line

_motor.throttle = @
ht_motor.throttle

ttle =
right_motor.throttle

turn_left(

_ .throttle
right_motor.throttle




ther True m

right_sensor:

right_sensor:

turn_rigl
left
turn_lef

Code Expalnation

import time
from adafruit_crickit import crickit
ss = crickit.seesaw

» time - for adding small delays.
» crickit & controls motors and sensors on the Adafruit Crickit board.
 ssis a shortcut for crickit.seesaw, which helps read/write sensor pins.

print("Line Follower with DC Motors using pin_mode + digital_read!")



* Displays a message when the program starts.
ss.pin_mode(crickit.SIGNAL1, ss.INPUT_PULLUP)
ss.pin_mode(crickit.SIGNALS, ss.INPUT_PULLUP)

* SIGNAL1 = Left IR sensor
* SIGNALS = Right IR sensor

* INPUT_PULLUP means the input pin is held “HIGH” by default, so when the sensor
detects a line, it goes “LOW.”

left_motor = crickit.dc_motor_1
right_motor = crickit.dc_motor_2
* Assigns the motors to the Crickit motor ports.
def stop():
left_motor.throttle =0

right_motor.throttle =0

def forward(speed=0.3):
left_motor.throttle = speed

right_motor.throttle = speed

def turn_left(speed=0.3):
left_motor.throttle =0

right_motor.throttle =

speed def turn_right(speed=0.3):
left_motor.throttle = speed

right_motor.throttle = 0

» These control how the robot moves:
while True:
right_sensor = ss.digital_read(crickit.SIGNALS8)
left_sensor = ss.digital_read(crickit.SIGNAL1)



* Runs continuously — reads sensor data and controls motors.
* Reads the left and right sensors (True or False).
if not left_sensor and not right_sensor:
state = "forward"
elif left_sensor and not right_sensor:
state = "turn_right"
elif not left_sensor and right_sensor:
state = "turn_left"
else:
state = "stop"
Interprets sensor data:
* Both detect black (False) - Go straight.
» Left white, right black = Turn right.
* Right white, left black = Turn left.
* Both white - Stop (off the line).
if state !=last_state:

This avoids repeating the same motor commands unnecessarily — improves
smoothness.

if not left_sensor and not right_sensor:
forward(0.3)
elif left_sensor and not right_sensor:
turn_right(0.3)
elif not left_sensor and right_sensor:
turn_left(0.3)
else:
stop()
last_state = state
time.sleep(0.01)
* Saves the last movement state.

* Adds a short delay (10 ms) to prevent rapid switching.






